Skip to main content

Group Action

An action of a group GG on a set XX is a map φ:G×XX\varphi: G\times X\to X which satisfies the following two conditions:

  1. xX,φ(e,x)=x\forall x\in X, \varphi(e,x) = x (identity)
  2. g,hG,xX,φ(g,φ(h,x))=φ(gh,x)\forall g,h\in G, \forall x\in X, \varphi(g,\varphi(h,x)) = \varphi(gh,x) (associativity)
    • for a defined map, we denote φ(g,x)=φg(x)=gx=g.x=gx\varphi(g,x) = \varphi_g(x) = g\cdot x = g.x = gx

If a set XX is equipped with an action of a group GG, then we will denote GXG\curvearrowright X

Let GXG\curvearrowright X, denote such action as φ\varphi, let xXx\in X:

  1. gG\forall g\in G the map φg:XX\varphi_g : X \to X is a bijection
  2. Any action φ\varphi uniquely defines a homomorphism ψ:GPerm(X)\psi : G \to \text{Perm}(X). And vice, versa, every such homomorphism defines an action of GG on XX.
  3. The orbit of xx is a set Gx:={g.x:gG}XGx:=\{g.x: g\in G\} \subseteq X
  4. The stabilizer of xx is a set Stabx=Gx:={gG:g.x=x}GStab_x = G_x := \{g\in G : g.x = x\}\subseteq G and is a subgroup of GG
  5. Define relation \sim where xGy    y=gx,gGx\sim_G y\iff y = gx, g\in G. Orbits are the equivalence classes respect to \sim
  6. φ\varphi is faithful if the kernel of the respective homomorphism φ:GPerm(X)\varphi: G\to Perm(X) is trivial. Equivalently, xX,gG,g.xx\forall x\in X, \exists g\in G, g.x \ne x
  7. φ\varphi is transitive if φ\varphi admits only one orbit which coincides with XX. Equivalently, x,yX,gG,s.t.,g.x=y\forall x,y \in X, \exists g\in G, s.t., g.x=y
    • Furthermore, (x1,,xn)Xn,(y1,,yn)Yn,gG,(g.xi)=(yi)\forall (x_1,\ldots, x_n)\in X^n, \forall (y_1,\ldots,y_n)\in Y^n,\exists g\in G, (g.x_i)= (y_i)

Some facts:

  • φl(g,h)=gh\varphi_l(g,h) = gh is a transitive and faithful action(prove by associativity) which used to prove Cayley's theorem.
  • We define an action via conjugation of GG to itself: g.h=ghg1g.h = ghg^{-1}. This action is not faithful, nor transitive, but can be use to prove Sylow's theorem. The orbits of this action are called conjugacy classes, gG\forall g\in G the stabilizer of gg is the centralizer CG(g)C_G(g)
  • the right multiplication does not define an action of non-abelian group to itself
  • xX\forall x\in X, the restriction of the action of its orbit GxGx is still an action, as gG,y=h.xGx,g.(h.x)=(gh).xGx\forall g\in G, y=h.x \in Gx, g.(h.x) = (gh).x \in Gx

Let X,YX,Y be two sets equipped with actions φX,φY\varphi_X,\varphi_Y of a single group GG. φX:XXf:XYφY:YY    f:XY\varphi_X: X\to X\land f:X\to Y \land \varphi_Y: Y\to Y \implies f:X\to Y is GG-equivariant. In other words, xX,gG\forall x\in X, g\in G we have f((φX)g(x))=(φY)g(f(x))f((\varphi_X)_g(x)) = (\varphi_Y)_g(f(x)) or f(g.x)=g.f(x)f(g.x) =g.f(x).

  • ff is a bijective map, then we will say that ff is an isomorphism of group actions.

Orbit-Stabilizer Theorem: Let GXG\curvearrowright X, let xXx\in X, the map f:GxG/Gxf: Gx\to G/G_x where y{gGgx=y}y\to \{g\in G | gx =y\} is an isomorphism of group actions via left multiplication of GG.

  • Let XX be equipped with an action of a finite group GG then xX\forall x\in X we have Gx=G/Gx|Gx| = |G|/|G_x|

Burnside's Lemma:: Let XX be a finite set, equipped with an action of a finite group GG. gG\forall g\in G let us denote Xg={xX:g.x=x}X^g = \{x\in X: g.x = x\}. Als, by X/GX/G we will denote the set of orbits w.r.t. the action of GG. Then X/G=1GgGXg|X/G| = \frac{1}{|G|}\sum_{g\in G}|X^g|